VLSI Implementation of Double-Precision Floating-Point Multiplier Using Karatsuba Technique
نویسندگان
چکیده
The double-precision floating-point arithmetic, specifically multiplication, is a widely used arithmetic operation for many scientific and signal processing applications. In general, the double-precision floating-point multiplier requires a large 53 × 53 mantissa multiplication in order to get the final result. This mantissa multiplication exists as a limit on both area and performance bounds of this operation. This paper presents a novel way to reduce this large multiplication. The proposed approach in this paper allows to use less amount of multiplication hardware compared to the traditional method. The multiplication is done by using Karatsuba technique. This design is specifically targeting Field Programmable Gate Array (FPGA) platforms, and it has also been evaluated on ASIC flow. The proposed module gives excellent performance with efficient use of resources. The design is fully compatible with the IEEE standard precision. The proposed module has shown a better performance in comparison with the best reported multipliers in the literature.
منابع مشابه
A Novel Efficient VLSI Architecture for IEEE 754 Floating point multiplier using Modified CSA
Due to advancement of new technology in the field of VLSI and Embedded system, there is an increasing demand of high speed and low power consumption processor. Speed of processor greatly depends on its multiplier as well as adder performance. In spite of complexity involved in floating point arithmetic, its implementation is increasing day by day. Due to which high speed adder architecture beco...
متن کاملLarge multipliers with less DSP blocks
Recent computing-oriented FPGAs feature DSP blocks including small embedded multipliers. A large integer multiplier, for instance for a double-precision floatingpoint multiplier, consumes many of these DSP blocks. This article studies three non-standard implementation techniques of large multipliers: the Karatsuba-Ofman algorithm, non-standard multiplier tiling, and specialized squarers. They a...
متن کاملFPGA Implementation of Double Precision Floating Point Multiplier using Xilinx Coregen Tool
Floating point arithmetic is widely used in many areas, especially scientific computation and signal processing. The main applications of floating points today are in the field of medical imaging, biometrics, motion capture and audio applications. The IEEE floating point standard defines both single precision and double precision formats. Multiplication is a core operation in many signal proces...
متن کاملVLSI Implementation of Neural Network
This paper proposes a novel approach for an optimal multi-objective optimization for VLSI implementation of Artificial Neural Network (ANN) which is area-power-speed efficient and has high degree of accuracy and dynamic range. A VLSI implementation of feed forward neural network in floating point arithmetic IEEE-754 single precision 32 bit format is presented that makes the use of digital weigh...
متن کاملFPGA based Implementation of High Speed Double Precision Floating Point Multiplier with Tiling Technique using Verilog
Floating point arithmetic is widely used in many areas, especially scientific computation and signal processing. For many signal processing, and graphics applications, it is acceptable to trade off some accuracy (in the least significant bit positions) for faster and better implementations. However, most of these modern applications need higher frequency or low latency of operations with minima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CSSP
دوره 32 شماره
صفحات -
تاریخ انتشار 2013